A physical model for PDZ-domain/peptide interactions

نویسندگان

  • Kristian Kaufmann
  • Nicole Shen
  • Laura Mizoue
  • Jens Meiler
چکیده

The PDZ domain is an interaction motif that recognizes and binds the C-terminal peptides of target proteins. PDZ domains are ubiquitous in nature and help assemble multiprotein complexes that control cellular organization and signaling cascades. We present an optimized energy function to predict the binding free energy (ΔΔG) of PDZ domain/peptide interactions computationally. Geometry-optimized models of PDZ domain/peptide interfaces were built using ROSETTA: , and protein and peptide side chain and backbone degrees of freedom are minimized simultaneously. Using leave-one-out cross-validation, ROSETTA: 's energy function is adjusted to reproduce experimentally determined ΔΔG values with a correlation coefficient of 0.66 and a standard deviation of 0.79 kcal mol(-1). The energy function places an increased weight on hydrogen bonding interactions when compared to a previously developed method to analyze protein/protein interactions. Binding free enthalpies (ΔΔH) and entropies (ΔS) are predicted with reduced accuracies of R = 0.60 and R = 0.17, respectively. The computational method improves prediction of PDZ domain specificity from sequence and allows design of novel PDZ domain/peptide interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of PDZ domain-peptide interaction interface based on energetic patterns.

PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 217 [corrected] peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction ener...

متن کامل

Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study.

Like other protein-protein interaction domains, PDZ domains are involved in many key cellular processes. These processes often require that specific multiprotein complexes be assembled, a task that PDZ domains accomplish by binding to specific peptide motifs in target proteins. However, a growing number of experimental studies show that PDZ domains (like other protein-protein interaction domain...

متن کامل

Analysis of PDZ domain interactions using yeast two-hybrid and coimmunoprecipitation assays.

The PDZ domain is a protein-protein interaction module that interacts with a C-terminal short peptide motif in its binding partners. A variety of methods have been used to study PDZ domain interactions. This chapter details the two methods most commonly used in the analysis of PDZ interactions: yeast two-hybrid and coimmunoprecipitation assays. In addition, we discuss the features that must be ...

متن کامل

Role of electrostatic interactions in PDZ domain ligand recognition.

PDZ domains are protein-protein interaction modules that normally recognize short C-terminal peptides. The apparent requirement for a ligand with a free terminal carboxylate group has led to the proposal that electrostatic interactions with the terminus play a significant role in recognition. However, this model has been called into question by the more recent finding that PDZ domains can recog...

متن کامل

Binding Free Energy Landscape of Domain-Peptide Interactions

Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective using an all-atom Monte Carlo (MC) approach. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2011